Position-Time Graph Worksheet

The position-time graph below represents the motion of a remote-controlled toy truck as it moves back and forth along a straight line path. The origin marks the position of the boy who controls the truck. A positive position is to the right of the boy, and a negative position is to the left of the boy.

1. During which time intervals is the truck

a) to the right of the boy? 10 - 40 s

d) moving in the negative direction? <u>25-55 ≤</u>

e)	not moving?	15-255	

2. What is the position of the truck at

3. How far did the truck travel during the following time intervals?

6 m

4. What was the displacement of the truck during the following intervals?

0

b) 10-15 s

_	4	~	
_	\neg	~~	

5. Average speed is given by the distance traveled divided by the time interval. Calculate the average speed for each interval.

a)
$$0-10 \text{ s}$$

6. Average velocity is given by the displacement of the truck divided by the time interval. It can also be determined by calculating the slope of the line segment on a position-time graph. Calculate the average velocity for each time interval by calculating the slope.

$\mathbf{Run} = \Delta t$ $\mathbf{Time\ Interval}$	$\begin{aligned} \mathbf{Rise} &= \Delta d \\ \mathbf{Displacement} \end{aligned}$	Slope = v Velocity
105	4 m	D.4 m/s
5 5	. 6 m	1.2 m/s
105	0 m	0
10 5	-2 m	-0.2 m/s
S 5	-4 m	-3.8 m/s
10 5	-4 m	-0.4 m/s

- 7. How do the signs of the velocities in #6 compare to the direction of motion in #1? + is right, - is left
- 8. In terms of the truck's motion,

 - c) what does a velocity of zero mean? at rest